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Abstract We study the branching random walk on weighted graphs; site-breeding and edge-
breeding branching random walks on graphs are seen as particular cases. Two kinds of sur-
vival can be identified: a weak survival (with positive probability there is at least one particle
alive somewhere at any time) and a strong survival (with positive probability the colony sur-
vives by returning infinitely often to a fixed site). The behavior of the process depends on the
value of a certain parameter which controls the birth rates; the threshold between survival
and (almost sure) extinction is called critical value. We describe the strong critical value in
terms of a geometrical parameter of the graph. We characterize the weak critical value and
relate it to another geometrical parameter. We prove that, at the strong critical value, the
process dies out locally almost surely; while, at the weak critical value, global survival and
global extinction are both possible.

Keywords Branching random walk · Branching process · Critical value · Critical
behavior · Weighted graph

1 Introduction

We consider the branching random walk (briefly BRW) as a continuous-time process where
particles live on an at most countable set X (the set of sites). Each particle lives on a site
and, independently of the others, has a random lifespan; during its life it breeds at random
intervals and sends its offspring to randomly chosen sites. More precisely each particle has
an exponentially distributed lifespan with mean 1. To a particle living at site x, for any
y ∈ X, there corresponds a Poisson clock of rate λkxy : when the clock rings, a new particle
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is born in y (where K = (kxy)x,y∈X is a matrix with nonnegative entries and λ > 0), provided
that the particle at x is still alive.

This approach unifies the two main points of view which may be found in the literature:
the site-breeding BRW and the most widely used edge-breeding BRW. Indeed in the first
case there is a constant reproduction rate λ at each site and the offspring is sent accordingly
to a probability distribution on X (thus (kxy)x,y∈X is a stochastic matrix). Examples can be
found in [1, 4, 11] (in the later it is called modified BRW). In the edge-breeding model, X

is a graph and to each (oriented) edge one associates a reproduction rate λ (thus (kxy)x,y∈X

is the adjacency matrix of the graph). Some examples are in [1, 6, 9–11]. On regular graphs
(see for instance [5, 7]), the site-breeding model employing the transition matrix of the
simple random walk is equivalent, up to a multiplicative constant, to the edge-breeding
one.

We consider the BRW with initial configuration given by a single particle at a fixed site
x: there are two kinds of survival:

(i) weak (or global) survival—the total number of particles is positive at each time;
(ii) strong (or local) survival—the number of particles at site x is not eventually 0.

Let us denote by λw(x) (resp. λs(x)) the infimum of the values of λ such that there is weak
(resp. strong) survival with positive probability. Clearly λw(x) ≤ λs(x) and these values do
not depend on x when K is irreducible (see Sect. 2.1). For the edge-breeding BRW on a
connected graph, in [10] it was proved that λs = 1/Ms where Ms is a geometrical parameter
of the graph. This result can be extended to the BRW on weighted graphs (Theorem 4.1). To
our knowledge the behavior of the BRW at λ = λs(x) was yet unknown: we prove that there
is almost sure extinction in Theorem 4.7 (we proved the same result for BRW on multigraphs
in [1]).

More challenging is the characterization of the weak critical parameter λw(x) and the
study of the weak critical behavior. Following the ideas which lead to the characterization of
λs(x) one naturally guesses that λw(x) = 1/Mw(x) (see Sect. 2.1 for the definition). Indeed
in [1] we proved that, when K is irreducible, λw ≥ 1/Mw and we gave sufficient conditions
for equality (for instance all site-breeding BRWs satisfy these conditions). In this paper we
use a different approach which allows us to characterize λw(x) in terms of the existence of
solutions of certain infinite-dimensional linear systems (Theorem 4.2); in particular we show
that λw(x) is related to the so-called Collatz-Wielandt numbers of some linear operator (see
[2, 3, 8] for the definition).

Thanks to this characterization, we prove a stronger lower bound, λw(x) ≥ 1/M−
w (x) and

give sufficient conditions for equality (Remark 4.4 and Propositions 4.5 and 4.6). We show
(Example 2) that it may be that λw(x) = 1/M−

w (x) �= 1/Mw(x). As for the critical behavior,
Example 3 is a BRW which globally survives at λw(x) (while for instance on finite weighted
graphs the BRW dies out at λw(x)—this is a particular case of Theorem 4.8). The question
whether λw(x) = 1/M−

w (x) always holds is, as far as we know, still open.
The basic idea behind the study of λw(x) relies on the comparison between the BRW

and an infinite-type branching process (briefly IBP). It is well known that the probability
of extinction of a Galton-Watson branching process is the smallest positive fixed point of
a certain generating function. In Sect. 3 we prove some results on IBPs by studying an
infinite-dimensional generating function and its fixed points.

The paper is organized as follows: Sects. 2.1 and 2.2 introduce the basic definitions
(among which the definition of weighted graph and of the geometrical parameters of the
graph). In Sect. 2.3 we prove some results on fixed points for monotone functions in par-
tially ordered sets. In Sect. 3 we define IBPs and associate in a “canonical” way an IBP
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to a given BRW. Section 4 is devoted to the study of the critical values λs(x) and λw(x)

(Sect. 4.1) and of the strong and weak critical behaviors (Sect. 4.2). Finally in Sect. 5 we
give some examples of IBPs and BRWs.

2 Basic Definitions and Preliminaries

2.1 Weighted Graphs

Let us consider (X,K) where X is a countable (or finite) set and K = (kxy)x,y∈X is a matrix
of nonnegative weights (that is, kxy ≥ 0) such that supx∈X

∑
y∈X kxy = M < ∞. We denote

by (X,K) the weighted graph with set of edges E(X) := {(x, y) ∈ X × X : kxy > 0}, where
to each edge (x, y) we associate the weight kxy . We say that K is irreducible if (X,E(X)),
as a directed graph, is connected.

We define recursively kn
xy := ∑

w∈X kn−1
xw kwy (where k0

xy := δxy ); moreover we set T n
x :=

∑
y∈X kn

xy and φn
xy := ∑

x1,...,xn−1∈X\{y} kxx1kx1x2 · · · kxn−1y ; by definition φ0
xy := 0 for all

x, y ∈ X. Clearly kn
xy is the total weight of all paths of length n from x to y, T n

x is the
total weight of all paths of length n from x, while φn

xy is the analog of kn
xy regarding only

paths reaching y for the first time at the n-th step.
For kn

xy and T n
x the following recursive relations hold for all n,m ≥ 0

kn+m
xy =

∑

w∈X

kn
xwkm

wy;
⎧
⎨

⎩

T n+m
x = ∑

w∈X kn
xwT m

w ,

T 0
x = 1

and, for all n ≥ 1,

kn
xy =

n∑

i=0

φi
xyk

n−i
yy .

Whenever, given x, y ∈ X, there exists n ∈ N such that kn
xy > 0 we write x → y; if x → y

and y → x then we write x ↔ y. This is an equivalence relation; let us denote by [x] the
equivalence class of x (usually called irreducible class). We observe that the summations
involved in kn

xx could be equivalently restricted to sites in [x], moreover λs(x) depends only
on [x]. Similarly one can prove that λw(x) depends only on [x].

We introduce the following geometrical parameters

Ms(x, y;X) := lim sup
n

(kn
xy)

1/n, Mw(x;X) := lim sup
n

(T n
x )1/n,

M−
w (x;X) := lim inf

n
(T n

x )1/n.

In the rest of the paper, whenever there is no ambiguity, we will omit the dependence on X.
Moreover, we write Ms(x) := Ms(x, x); supermultiplicative arguments imply that Ms(x) =
limn(k

dn
xx )1/dn for some d ∈ N hence, for all x ∈ X, we have that Ms(x) ≤ M−

w (x) ≤ Mw(x).
It is easy to show that the above quantities are constant within an irreducible class; hence in
the irreducible case the dependence on x, y will be omitted.
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2.2 Generating Functions

Let us consider the following generating functions

�(x, y|λ) :=
∞∑

n=0

kn
xyλ

n, �(x|λ) :=
∞∑

n=0

T n
x λn, �(x, y|λ) :=

∞∑

n=1

φn
xyλ

n;

note that the radii of convergence of �(x, y|λ) and �(x|λ) are 1/Ms(x, y) and 1/Mw(x)

respectively. The following relation holds

�(x, y|λ) = �(x,y|λ)�(y, y|λ) + δxy, ∀λ : |λ| < min(1/Ms(x, y),1/Ms(y)). (2.1)

Since

�(x, x|λ) = 1

1 − �(x,x|λ)
, ∀λ ∈ C : |λ| < 1/Ms(x), (2.2)

we have that 1/Ms(x) = max{λ ≥ 0 : �(x,x|λ) ≤ 1} for all x ∈ X (see Sect. 2.2 of [1] for
details).

2.3 Fixed Points in Partially Ordered Sets

Let (Q,≥) be a partially ordered set and W : Q 
→ Q be a nondecreasing function, that is,
x ≥ y implies W(x) ≥ W(y). Let us denote by (−∞, y] and [y,+∞) the intervals {w ∈
Q : w ≤ y} and {w ∈ Q : w ≥ y} respectively. We consider a topology τ on Q such that all
the intervals (−∞, y] and [y,+∞) are closed.

Proposition 2.1 Let W : Q 
→ Q be a nondecreasing function.

(a) If q ≥ W(q) then W((−∞, q]) ⊆ (−∞, q]. If q ≤ W(q) then W([q,+∞)) ⊆ [q,+∞).

Moreover let us suppose that q0 ∈ Q satisfies W(q0) ≥ q0 (resp. W(q0) ≤ q0) and define the
sequence {qn}n∈N recursively by qn+1 = W(qn), for all n ∈ N. The following hold.

(b) The sequence is nondecreasing (resp. nonincreasing).
(c) If the sequence has a cluster point q and y is such that y ≥ q0, y ≥ W(y) (resp. y ≤ q0,

y ≤ W(y)) then q ≤ y (resp. q ≥ y).
(d) Every cluster point q of {qn}n∈N satisfies q ≥ q0 (resp. q ≤ q0). If W is continuous then

there is at most one cluster point q and

W(q) = q and (−∞, q] =
⋂

y≥q0:W(y)≤y

(−∞, y] =
⋂

y≥q0:W(y)=y

(−∞, y]
(

resp. W(q) = q and (−∞, q] =
⋃

y≤q0:W(y)≥y

(−∞, y] =
⋃

y≤q0:W(y)=y

(−∞, y]
)

.

Proof (a), (b) and (c) are straightforward. As for (d), the first claim follows since [q0,+∞)

is closed. Continuity implies that for every cluster point W(q) = q . Moreover if q and q̃ are
two cluster points then since q0 ≤ q̃ then by (c) q ≤ q̃ and similarly q̃ ≤ q whence q = q̃ .
By (c) (−∞, q] = ⋂

y≥q0:W(y)≤y(−∞, y]. Moreover since W(q) = q

(−∞, q] ⊇
⋂

y≥q0:W(y)=y

(−∞, y] ⊇
⋂

y≥q0:W(y)≤y

(−∞, y]
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whence the claim. The proof of the second claim is analogous. �

The following corollary is a direct consequence of the previous proposition; the proof is
straightforward and we omit it.

Corollary 2.2 Let Q have a smallest element 0 (resp. a largest element 1), W : Q 
→ Q be
a continuous nondecreasing function. If {qn}n∈N is recursively defined by

{
qn+1 = W(qn),

q0 = 0 (resp. q0 = 1).
(2.3)

then {qn}n∈N has at most one cluster point q; moreover q is the smallest (resp. largest) fixed
point of W and for any y ∈ Q, we have that q < y (resp. q > y) if and only if there exists
y ′ < y (resp. y ′ > y) such that W(y ′) ≤ y ′ (resp. W(y ′) ≥ y ′).

3 Infinite-Type Branching Processes

Let X be a set which is at most countable. Each element of this set represents a different
type of particle of a (possibly) infinite-type branching process. Given f ∈ 	 := {g ∈ N

X :
S(g) := ∑

x∈X g(x) < +∞}, at the end of its life a particle of type x gives birth to f (y)

children of type y (for all y ∈ X) with probability μx(f ) where {μx}x∈X is a family of
probability distributions on the (countable) measurable space (	,2	).

To the family {μx}x∈X we associate a generating function G : [0,1]X → [0,1]X which
can be considered as an infinite dimensional power series. More precisely, for all z ∈ [0,1]X
the function G(z) ∈ [0,1]X is defined as follows

G(z|x) :=
∑

f ∈	

μx(f )
∏

y∈X

z(y)f (y). (3.1)

Note that G is continuous with respect to the pointwise convergence topology (or product
topology) on [0,1]X . Indeed, every f ∈ 	 is finitely supported, hence

∏
y∈X z(y)f (y) is a fi-

nite product and z 
→ ∏
y∈X z(y)f (y) is continuous. The continuity of G follows from Weier-

strass criterion for uniform convergence, since supz∈[0,1]X μx(f )
∏

y∈X z(y)f (y) = μx(f )

which is summable.
The set [0,1]X is partially ordered by z ≥ z′ if and only if z(x) ≥ z′(x) for all x ∈ X; by

z > z′ we mean that z ≥ z′ and z �= z′. We denote by 0 and 1 the smallest and largest element
of [0,1]X respectively, that is 0(x) := 0 and 1(x) := 1 for every x ∈ X. The topological (par-
tially ordered) space [0,1]X is compact and every monotone sequence has a cluster point,
moreover all the intervals (−∞, z] ≡ [0, z] and [z,+∞) ≡ [z,1] are closed sets whence all
the hypotheses of Corollary 2.2 are satisfied. Let us note that G(1) = 1 and G is nondecreas-
ing. From now on we suppose that μx(0) > 0 for some x ∈ X in order to avoid a trivial case
of almost sure survival.

Let qn(x) be the probability of extinction before or at the n-th generation starting from
a single initial particle of type x; and let q(x) be the probability of extinction at any time
starting from the same configuration. Note that qn and q can be viewed as elements of
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[0,1]X . Clearly q0 = 0 and

qn+1(x) =
∑

f ∈	

μx(f )
∏

y∈X

qn(y)f (y) = G(qn|x);

q(x) = lim
n→∞qn(x).

According to Proposition 2.1 and Corollary 2.2, q is the smallest fixed point of G and q < 1
if and only if

G(y) ≤ y for some y < 1. (3.2)

Hence, if y satisfies (3.2) then y(x) is an upper bound for q(x). Conversely if we define

H(v) := 1 − G(1 − v) (3.3)

then H is nondecreasing and continuous; moreover if

{
vn+1 = H(vn),

v0 = 1.
(3.4)

then {vn}n∈N is nonincreasing and has a unique cluster point v := limn→∞ vn = 1−q . Clearly
vn(x) can be interpreted as the probability of survival up to the n-th generation for the BRW
starting with one particle on x (v(x) being the probability of surviving forever).

Moreover v > 0 if and only if H(y) ≥ y for some y ≥ 0. Note that in this case y(x) is a
lower bound for v(x). Let Gn and Hn be the n-th iterates of G and H ; Hn(v) = 1−Gn(1−v)

and they are continuous and nondecreasing.

Remark 3.1 Let us consider the graph (X,Eμ) where Eμ := {(x, y) ∈ X2 : ∃f ∈ 	,f (y) >

0,μx(f ) > 0}. We call the IBP irreducible if and only if the graph (X,Eμ) is connected. It
is easy to show that for the extinction probabilities q of an irreducible IBP we have q < 1
(that is v > 0) if and only if q(x) < 1 for all x ∈ X (that is v(x) > 0 for all x ∈ X).

3.1 Infinite-Type Branching Processes Associated to Branching Random Walks

In order to study the weak behavior of the BRW, we associate a discrete-time branching
process to the (continuous-time) BRW in such a way that they both survive or both die at
the same time. Each particle of the BRW living on a site x will be given the label x which
represents its type. We suppose that the BRW starts from a single particle in a vertex x0;
if there are several particles we repeat this construction for each initial particle. The IBP is
constructed as follows: the 0th generation is one particle of type x0; the 1st generation of
the IBP is the collection of the children of this particle (ever born): this collection is almost
surely finite, say, r1 particles in the vertex x1, . . . , rm particles in xm. Thus from the point of
view of the IBP the 1st generation is the collection of r1 particles of type x1, . . . , rm particles
of type xm. Take one particle of type x1 in the 1-st generation and collect all its children,
repeat this for all the particles in the 1st generation: the set of all these new particles is the
2nd generation. Proceeding in the same way we construct the 3rd generation and so on.

Clearly the progeny of the IBP is the same as the progeny of the BRW hence the latter
is finite (i.e. the BRW dies out) if and only if the former is finite (i.e. the IBP dies out).
The probabilities of extinction of the IBP (that is, the smallest fixed point of the generating
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function), regarded as an element of [0,1]X , coincide with the probabilities of extinction of
the BRW.

Let us compute the generating function of this IBP. Roughly speaking, the probability
for a particle of type x of having f (y) children of type y for all y ∈ X (where f ∈ 	) is
the probability that, for all y ∈ X, a Poisson clock of rate λkxy rings f (y) times before the
death of the original particle (i.e. a clock of rate 1). Elementary computations show that

μx(f ) = S(f )!∏y∈X(λkxy)
f (y)

(1 + λ
∑

y∈X kxy)S(f )+1
∏

y∈X f (y)! .

Recalling (3.1) we have

Gλ(z|x) =
∑

f ∈	

S(f )!∏y∈X(λkxy)
f (y)

(1 + λ
∑

y∈X kxy)S(f )+1
∏

y∈X f (y)!
∏

y∈X

z(y)f (y)

= 1

1 + λ
∑

y∈X kxy

+∞∑

i=0

∑

f :S(f )=i

i!
∏

y∈X f (y)!
1

(1 + λ
∑

y∈X kxy)i

∏

y∈X

(λkxyz(y))f (y)

= 1

1 + λ
∑

y∈X kxy

+∞∑

i=0

(
λ

∑
y∈X kxyz(y)

1 + λ
∑

y∈X kxy

)i

= 1

1 + λ
∑

y∈X kxy(1 − z(y))
. (3.5)

We note that the quantity λkxy can be interpreted as the expected number of offsprings of
type y of a particle of type x. Clearly in this case

Hλ(v;x) = λ
∑

y∈X kxyv(y)

1 + λ
∑

y∈X kxyv(y)
.

If we define the bounded linear operator K : l∞(X) 
→ l∞(X) as Kv(x) := ∑
y∈X kxyv(y)

then

Hλ(v) = λKv

1 + λKv
, (3.6)

hence the functions Hλ
n and Gλ

n from [0,1]X into itself are nondecreasing and continuous
with respect to ‖ · ‖∞ for every n ≥ 1. In particular each iterate Hλ

n can be extended to
the positive cone l∞+ (X) := {v ∈ l∞(X) : v ≥ 0}. We observe that the operator K preserves
l∞+ (X).

When there is no ambiguity, we will drop the dependence on λ in these functions. From
now on, if not stated otherwise, it will be tacitly understood that G and H are defined by (3.5)
and (3.6) respectively.

It is easy to show that K is irreducible (as stated in Sect. 2.1) if and only if the corre-
sponding IBP is irreducible in the sense of Remark 3.1.
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4 The Critical Values and the Critical Behaviors

4.1 The Critical Values

In [10] it was proved that, in the irreducible case, λs = 1/Ms for any graph. In [1] we
used a different approach to extend this result to multigraphs; the same arguments hold for
weighted graphs (we repeat the proof for completeness). This approach allows us to study
the critical behavior when λ = λs(x) (see Theorem 4.7). We observe that in the proof of the
following theorem to the BRW we associate a particular branching process which is not the
one introduced in Sect. 3.1. The proof relies on the concept of (reproduction) trail: see [10]
for the definition.

Theorem 4.1 For every weighted graph (X,K) we have that λs(x) = 1/Ms(x).

Proof Fix x ∈ X, consider a path 
 := {x = x0, x1, . . . , xn = x} and define its number of
cycles L(
) := |{i = 1, . . . , n : xi = x}|; the expected number of trails along such a path
is λn

∏n−1
i=0 kxixi+1 (i.e. the expected number of particles ever born at x, descending from

the original particle at x and whose genealogy is described by the path 
—their mothers
were at xn−1, their grandmothers at xn−2 and so on). Disregarding the original time scale, to
the BRW there corresponds a Galton-Watson branching process: given any particle p in x

(corresponding to a trail with n cycles), define its children as all the particles whose trail is a
prolongation of the trail of p and is associated with a spatial path with n+ 1 cycles. Hence a
particle is of the k-th generation if and only if the corresponding trail has k cycles; moreover
it has one (and only one) parent in the (k − 1)-th generation. Since each particle behaves
independently of the others then the process is Markovian. Thus the BRW survives strongly
if and only if this branching process does. The expected number of children of the branching
process is the sum over n of the expected number of trails of length n and one cycle, that is∑∞

n=1 φn
x,xλ

n = �(x,x|λ). Thus we have a.s. local extinction if and only if �(x,x|λ) ≤ 1,
that is, λ(x) ≤ 1/Ms(x). �

We turn our attention to the weak critical parameter λw(x), which, by Corollary 2.2, may
be characterized in terms of the function Hλ (defined by (3.6)):

λw(x) = inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0,Hλ(v) ≥ v}

= inf

{

λ ∈ R : ∃v ∈ [0,1]X, v(x) > 0, λKv ≥ v

1 − v

}

. (4.1)

Our goal is to give other characterizations of λw(x). Theorem 4.2 shows that, for every n ≥ 1

λw(x) = inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0,Hλ
n (v) ≥ v}

= inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0, λnKnv ≥ v}; (4.2)

thus, by taking n = 1 in the previous equation, λw(x) = inf{r
˜

K(v) : v ∈ l∞(X), v(x) = 1}
where r

˜
K(v) is the lower Collatz-Wielandt number of v (see [2, 3, 8]).

We note that (4.2) is particularly useful to compute the value of λw (indeed solving the
linear inequality therein is easier than solving the nonlinear inequality in (4.1)). Unfortu-
nately the critical (global) survival of the BRW (with one initial particle at x) is equivalent
to the existence of a solution of λw(x)Kv ≥ v/(1 − v) with v(x) > 0 (see Example 3). The
existence of a solution of λw(x)Kv ≥ v does not imply critical survival.
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Theorem 4.2 Let (X,K) be a weighted graph and let x ∈ X.

(a) If λ ≤ λw(x) and v ∈ [0,1]X is such that λKv ≥ v/(1−v) then infy:x→y,v(y)>0 v(y) = 0.
(b) For all n ∈ N, n ≥ 1 we have

λw(x) = inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0 such that Hλ
n (v) ≥ v}.

(c) For all n ∈ N, n ≥ 1 we have

λw(x) = inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0 such that λnKnv ≥ v}.

Proof

(a) Let X′ := {y ∈ X : x → y} and consider v′(y) := v(y)1X′(y), then λKv′ ≥ v′/(1 −
v′) (since λKv′(y) = λKv(y) for all y ∈ X′). Thus we may suppose, without loss of
generality, that X′ = X. For all t ∈ [0,1] we have λK(tv) ≥ tv

1−tv
1−tv
1−v

and v 
→ 1−tv
1−v

is
nondecreasing. By contradiction, suppose that infy∈X:v(y)>0 v(y) = δ > 0, hence 1−tv

1−v
≥

1−tδ
1−δ

1 and (λ 1−δ
1−tδ

)K(tv) ≥ tv
1−tv

. By (4.1), for all t ∈ (0,1), λ > λ 1−δ
1−tδ

≥ λw(x).
(b) Define λn(x) := inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0,Hλ

n (v) ≥ v}. Clearly Hλ(v) ≥ v im-
plies Hλ

n (v) ≥ v, thus λw(x) ≥ λn. If λ > λn then by Corollary 2.2 the sequence {̃vi}i∈N

defined by ṽ0 = 1, ṽi+1 = Hλ
n (̃vi) converges monotonically to some v > 0, namely

ṽi ↓ v. But ṽi = vni (for all i ∈ N) where the nonincreasing sequence {vj }j∈N is defined
by (3.4), whence vj ↓ v. By (4.1), since Hλ(v) = v, we get λ ≥ λw(x).

(c) Define now λn := inf{λ ∈ R : ∃v ∈ l∞+ (X), v(x) > 0 such that λnKnv ≥ v}. We prove
that λn ≤ λw(x) for all n ≥ 1. Indeed, if λ > λw(x), then there exists ṽ such that
λKṽ ≥ ṽ

1−ṽ
≥ ṽ. By induction on n, λnKnṽ ≥ ṽ, thus, for all n, λ ≥ λn which im-

plies λn ≤ λw . On the other hand, if λ > λn then there exists λ′ ∈ [λn,λ) such that
(λ′)nKnv ≥ v for some v ∈ l∞+ (X) such that v(x) > 0. If ε = λ/λ′ − 1 and δ > 0
is such that ‖λKHλ

n−1(δ
′v)‖∞ ≤ ε for all δ′ ∈ (0, δ] (which is possible since Hλ

n is
continuous and Hλ

n (0) = 0) then we have that Hλ
n (δ′v) ≥ (λ/(1 + ε))KHλ

n−1(δ
′v).

By induction on n and since K is a positive operator there exists δ̃ > 0 such that
Hλ

n (̃δv) ≥ (λ/(1 + ε))nKnHλ
0 (̃δv) = (λ′)nKn(̃δv) ≥ δ̃v whence λ ≥ λw(x) by (b) and

this implies λn ≥ λw(x). �

The following theorem improves Lemma 3.2 of [1].

Theorem 4.3 For every weighted graph (X,K) we have that λw(x) ≥ 1/M−
w (x).

Proof Let λ < 1/M−
w (x). If there exists v ∈ l∞+ (X) such that λKv ≥ v

1−v
≥ v, then

for all n ∈ N we have λnKnv ≥ v. Thus ‖v‖∞λn
∑

y∈X kn
xy ≥ λnKnv(x) ≥ v(x), but,

since λ lim infn n

√∑
y∈X kn

xy < 1, we have that lim infn λn
∑

y∈X kn
xy = 0, whence v(x) = 0.

By (4.1), λ ≤ λw(x). �

Remark 4.4 Let us focus on the particular case where X is finite. Clearly if K is irreducible,
then λw = λs = 1/Mw = 1/Ms = 1/M−

w and these parameters do not depend on the site of
the initial particle.

If X is finite, but K is not irreducible, it may happen that λw(x) �= λs(x) and also λw(x) �=
λw(y) (although λw(x) ≤ λw(y) for all y such that x → y).

Moreover in the finite case λw(x, [x]) = 1/M−
w (x, [x]) (where by adding [x] we con-

sider the parameters corresponding to the process restricted to [x], namely ([x],K|[x]×[x])).
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From this and the fact that the BRW starting from one particle in x survives globally if
and only if it survives (locally and globally) in at least one irreducible class, it follows that
λ(x,X) = min{1/M−

w (y, [y]) : x → y}. By induction on the number of equivalence classes,
it is not difficult to prove that M−

w (x,X) = max{M−
w (y, [y]) : x → y} which proves, for

finite weighted graphs, that λw(x,X) = 1/M−
w (x).

As for the critical behavior, the λw(x)-BRW dies out (globally, thus locally) almost
surely. Indeed if λw(x) < λw(y, [y]) = λs(y) it cannot survive confined to [y]. If λw(x) =
λw(y, [y]) then according to (a) of Theorem 4.2 the probabilities of survival v for the process
confined to [y] satisfy infz∈[y] v(z) = 0. Being [y] finite and irreducible, this means that
v(z) = 0 for all z ∈ [y].

We say that (X,K) is locally isomorphic to (Y, K̃) if and only if there exists a surjective
map f : X → Y such that

∑
z∈f −1(y) kxz = k̃f (x)y for all x ∈ X and y ∈ Y . An (X,K) which

is locally isomorphic to some (Y, K̃) “inherits” its M−
w s and λws (in a sense which is clear

in the proof of the following proposition).

Proposition 4.5 If Y is a finite set and (X,K) is locally isomorphic to (Y, K̃) then λw(x) =
1/M−

w (x).

Proof The definition of the map f immediately implies that
∑

z∈X kn
xz = ∑

y∈Y k̃n
f (x)y , hence

M−
w (x,X) = M−

w (f (x),Y ). Moreover λw(x,X) = λw(f (x),Y ). Indeed it is easy to prove
that λw(x,X) ≥ λw(f (x),Y ). Conversely, if λ > λw(f (x),Y ) and ṽ is such that λK̃ṽ ≥ ṽ

then we define v(x) := ṽ(f (x)). Clearly K̃ṽ(f (x)) = Kv(x) hence λ ≥ λw(x,X). Re-
mark 4.4 yields the conclusion. �

Examples of BRWs (X,K) which are locally isomorphic to some finite (Y, K̃) are
BRWs where

∑
z∈X kxz does not depend on x (in this case Y = {y} is a singleton and

k̃yy = ∑
z∈X kxz). Another example is given by quasi-transitive BRWs, that is, there ex-

ists a finite X0 ⊂ X such that for any x ∈ X there is a bijective map γx : X → X satisfying
γ −1

x (x) ∈ X0 and kyz = kγxy γxz for all y, z (in this case Y = X0 and k̃wz = ∑
y:y=γy(z) kwy ).

Let us consider now the irreducible case; since λw(x) and M−
w (x) do not depend on x let

us write λw and M−
w instead. Note that the characterization of λw can be written as

λw = inf{λ ∈ R : ∃v ∈ l∞(X), v > 0,Hλ(v) ≥ v}
= inf{λ ∈ R : ∃v ∈ l∞(X), v > 0, λnKnv ≥ v}
= inf{λ ∈ R : ∃v ∈ l∞(X), v > 0,Hλ

n (v) ≥ v}, (4.3)

where the requirement v > 0 seems less restrictive than v(x) > 0 for all x ∈ X, which is the
one we would expect in view of (4.1). Nevertheless by Remark 3.1 it follows that if there
exists v > 0 satisfying one of the inequalities in (4.1), then there exists a solution v′ of the
same inequality with v′(x) > 0 for all x ∈ X.

Proposition 4.6 Let (X,K) be an irreducible weighted graph. If for all ε > 0 there exists
N such that

∑
y∈X kN

xy ≥ (M−
w − ε)N , for all x ∈ X, then λw = 1/M−

w .

Proof Let λ > 1/M−
w . Choose ε such that λ(M−

w − ε) > 1. Then λNKN 1(x) =
λN

∑
y∈X kN

xy ≥ (λ(M−
w − ε))N > 1. Hence by Theorem 4.2 λ > λw . Theorem 4.3 yields

the conclusion. �
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We note that if (X,K) is irreducible and satisfies the hypothesis of Proposition 4.5, then
Proposition 4.6 provides an alternative proof of λw = 1/M−

w . For an example (which is
not locally isomorphic to a finite weighted graph), where one can use Proposition 4.6, see
Example 3 in [1] (which is a BRW on a particular radial tree).

4.2 The Critical Behavior

Theorem 4.7 For each weighted graph (X,K) if λ = λs(x) then the λ-BRW starting from
one particle at x ∈ X dies out locally almost surely.

Proof Recall that (see the proof of Theorem 4.1) the λ(x)-BRW survives locally if and only
if the Galton-Watson branching process with expected number of children �(x,x|λ) does.
Since �(x,x|1/Ms) ≤ 1 and λs(x) = 1/Ms then there is a.s. local extinction at λs(x). �

Theorem 4.8 If Y is a finite set and (X,K) is locally isomorphic to (Y, K̃) then the λw(x)-
BRW starting from one particle at x ∈ X dies out globally almost surely.

Proof It is clear that the λw(x)-BRW on X dies out if and only if the λw(x)-BRW on Y

does. Remark 4.4 yields the conclusion. �

5 Examples

We start by giving an example of an irreducible IBP where, although the expected number
of children of each particle is less than 1, nevertheless the colony survives with positive
probability.

Example 1 Let X = N, {pn}n∈N be a sequence in [0,1) and suppose that a particle of type
n ≥ 1 at the end of its life has one child of type n + 1 with probability 1 − pn, one child of
type n − 1 with probability pn/2 (if n = 0 then it has one child of type 0 with probability
p0/2) and no children with probability pn/2. The generating function G can be explicitly
computed

G(z|n) =
{

pn

2 + pn

2 z(n − 1) + (1 − pn)z(n + 1), n ≥ 1,

p0
2 + p0

2 z(0) + (1 − p0)z(1), n = 0.

This process clearly dominates the (reducible) one where a particle of type n at the end of its
life has one child of type n + 1 with probability 1 − pn and no children with probability pn.
The latter process has generating function G̃(z|n) = pn + (1 − pn)z(n + 1). By induction
it is easy to show that the probabilities of extinction before or at generation n of the sec-
ond process are qn(j) = 1 − ∏j+n−1

i=j (1 − pi) for all n ≥ 1; hence it survives with positive
probability, that is qn(0) �→ 1 as n → ∞, if and only if

∑∞
i=1 pi < +∞.

In all the following examples, X = N and kij = 0 whenever |i − j | > 1. Although this
looks quite restrictive, one quickly realizes that many BRWs are locally isomorphic to BRWs
of this kind. For instance, every BRW on a homogeneous tree of degree m (with kij = 1
on each edge) is locally isomorphic to the BRW on N with k0 1 := m, knn+1 := m − 1,
knn−1 := 1 and 0 otherwise. More generally any radial BRW on a radial tree is locally
isomorphic to a BRW on N. Indeed a general radial BRW on a radial tree is constructed as
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follows: let us consider two positive real sequences {k+
n }n∈N, {k−

n }n∈N and a positive integer
valued sequence {an}n∈N. By construction, the root of the tree is some vertex o which has
a0 neighbors and the rates are kox := k+

0 , kxo := k−
0 for all neighbors x. Each vertex x at

distance 1 from o has 1 + a1 neighbors (one is o) and we set kxy := k+
1 and kyx := k−

1
for all its a1 neighbors y at distance 2 from o. Now each vertex at distance 2 from o has
1 + a2 neighbors, an outward rate k+

2 and an inward rate k−
2 and so on. This BRW is clearly

locally isomorphic to (therefore it has the same global behavior of) the BRW on N with
knn+1 := ank

+
n , kn+1n := k−

n and 0 otherwise.
The next one is an example of a BRW on N which is not irreducible and where λw >

1/Mw . This answers an open question raised in [1].

Example 2 Let {kn}n∈N be a bounded sequence of positive real numbers and let us consider
the BRW on N with rates kij := ki if i = j − 1 and 0 otherwise. By using (3.4) and (3.6) one
can show that vn(i) = λnβi+n/(1 + ∑n

r=1 λrβi+n/βi+n−r ) where βn := ∏n−1
i=0 ki .

In order to prove that λw(i) = 1/ lim infn n
√

βn+i/βi = 1/M−
w (i) (which does not depend

on i, though the BRW is not irreducible) one may either study the behavior of {vn}n∈N above
or, which is simpler, use Theorem 4.2. Indeed, without loss of generality, we just need to
prove that for all λ > 1/ lim infn n

√
βn it is possible to solve the inequality λKv ≥ v for

some v ∈ l∞(X), v > 0. One can easily check that v(n) := 1/(λnβn) is a solution; since
λ > 1/ lim infn n

√
βn we have that limn v(n) = 0 and then v ∈ l∞(X).

Note that λw = 1/M−
w which may be different from 1/Mw with the following choice of

the rates. It suffices to define big intervals of consecutive vertices where ki i+1 = 1, followed
by bigger intervals of vertices where ki i+1 = 2 and so on. The result is a BRW where Mw =
lim supn

n
√

βn = 2 while M−
w = lim infn n

√
βn = 1.

Although this BRW is not irreducible, it is clear that a slight modification (that is, adding
a small backward rate as in the following example) does not modify significantly the behav-
ior of the process and allows to construct an irreducible example with the same property.
Finally, the last example shows that the weak critical survival is possible (while, according
to Theorem 4.7, any strong critical BRW dies out locally).

Example 3 Let X := N and K be defined by k0 1 := 2, knn+1 := (1+1/n)2, kn+1n := 1/3n+1

and 0 otherwise. Hence the inequality λKv ≥ v/(1 − v) becomes

{
2λv(1) ≥ v(0)/(1 − v(0)),

λ(v(n + 1)(1 + 1/n)2 + v(n − 1)/3n) ≥ v(n)/(1 − v(n)).

Clearly v(0) = 1/2 and v(n) := 1/(n + 1) (for all n ≥ 1) is a solution for all λ ≥ 1. If λ < 1
then one can prove by induction that a solution must satisfy v(n + 1)/v(n) ≥ 1

λ
( n

n+1 )2(1 −
1

2n ) for all n ≥ 2. Thus v(n + 1)/v(n) is eventually larger than 1 + ε for some ε > 0, hence
either v = 0 or limn v(n) = +∞. This implies that λw = 1 and there is global survival if
λ = λw .
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